Leapfrog routine
Leapfrog routine
besselK_boost(x, v)
besselK(x, v)
matern(nu, a, rho, tau, D)
trenchDetcpp(c)
trenchInvcpp(v)
loglikeGPcpp(Y, Z, A, logcovDet, sigmak, nk, D, Y2)
likelihoodGPcpp(Xk, tau, h, nk, D, materncov = 0L, nu = 2)
gradientrhomatern(Y, drvrhomatern, nk, D, Z, A, sigmak)
gradientamatern(Y, amatern, nk, D, Z, A, sigmak)
gradientGPcppmatern(Xk, tau, h, nk, D, nu)
LeapfrogGPcppPC(Xk, lambda, tau, p, x, m, nk, D, L, delta, nu)
sampleGPmeanmaterncpp(Xk, tau, h, nk, D, nu)
makeComponent(X, BX, Y, BY, j)
sampleGPmeancpp(Xk, tau, h, nk, D)
normalisedData(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, j)
normalisedDatamatern(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, j, nu)
centeredDatamatern(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, K, nu)
componentloglike(centereddata, sigmak)
comploglike(centereddata, sigmak)
comploglikelist(centereddata, sigmak)
sampleDirichlet(numSamples, alpha)
sampleOutliercpp(allocoutlierprob)
sampleAlloccpp(allocprob)
centeredData(Xknown, BX, Xunknown, BXun, hypers, nk, tau, D, K)
mahaInt(X, mu, sigma, isChol = FALSE)
dmvtInt(X, mu, cholDec, log, df)
dmvtCpp(X_, mu_, sigma_, df_, log_, isChol_)
gradientGPcpp(Xk, tau, h, nk, D)
LeapfrogGPcpp(Xk, tau, p, x, m, nk, D, L, delta)
rcpp_pgdraw(b, c)
position
argument of trench algorithm
smoothness parameter of matern covariance
amplitude
length-scale
indexing term
number of samples
parameter of PG distribution
pointer to data to be subset. X and Y will be joined
special matrix from trench algorithm (see Crook et al arxiv 2019)
special matrix from trench algorithm (see Crook et al arxiv 2019)
log determine of the covariancematrix
variance term
number of observations
vectorised data (see Crook et al arxiv 2019)
The data
vector of hyperparamters
logical indicating whether to use matern or gaussian covariance. Defaults to Guassian covariance
deterivate of matern covariance wrt to rho
deterivate of matern covariance wrt to amplitude
parameters of penalised complexity prior
momentum
mass
iterations
stepsize
data
indexing set to make component
pointer to subsetting matrix
indicator of localisations i.e. niche j
data with known localisations
data with unknown localisations
indexing set for unknown localisations
vector of hyperparameters
number of components
pointer to centered data
The number of samples desired
The concentration parameter
The probabilities of being allocated to the outlier component
probability of being allocated to particular component
mean
variance matrix
boolen indicated whether sigma is cholesky decomposition
Cholesky decomposition of variance matrix
boolen of log density
degrees of freedom for t distribution
the data
the mean
the variance matrix
the degrees of freedom
return log density (boolean).
is variance matrix in cholesky decomposition
parameter of PG distribution
A numeric indicating the density of the t-distribution