| 
           EFDR()  
         | 
        Compute the expected False Discovery Rate  | 
      
| 
           besselK_boost() besselK() matern() trenchDetcpp() trenchInvcpp() loglikeGPcpp() likelihoodGPcpp() gradientrhomatern() gradientamatern() gradientGPcppmatern() LeapfrogGPcppPC() sampleGPmeanmaterncpp() makeComponent() sampleGPmeancpp() normalisedData() normalisedDatamatern() centeredDatamatern() componentloglike() comploglike() comploglikelist() sampleDirichlet() sampleOutliercpp() sampleAlloccpp() centeredData() mahaInt() dmvtInt() dmvtCpp() gradientGPcpp() LeapfrogGPcpp() rcpp_pgdraw()  
         | 
        bessel function of the second kind from boost library  | 
      
| 
           diffLocalisationProb() bootstrapdiffLocprob() binomialDiffLocProb()  
         | 
        Compute differential localisation probabilities from ms-based
experiments using the bandle method  | 
      
| 
           gradientGP() gradientGPmatern() posteriorgradientGPmatern() gradientlogprior() likelihoodGP() likelihoodGPmatern() posteriorGPmatern() Gumbel() PCrhomvar() metropolisGP() metropolisGPmatern() Gumbel() PCrhomvar()  
         | 
        Compute GP gradient  | 
      
| 
           fitGP() fitGPmaternPC() fitGPmatern() plotGPmatern()  
         | 
        Fit a Gaussian process to spatial proteomics data  | 
      
| 
           proteinAllocation() outlierAllocationProbs() sampleOutlier() covOrganelle() pg_prior() sample_weights_pg() sample_weights_dir()  
         | 
        sample allocations, probabilities and compute loglikilihoods  | 
      
| 
           meanOrganelle()  
         | 
        Computes Organelle means and variances using markers  | 
      
| 
           bandle-package  
         | 
        An R package for the Bayesian analysis of differential subcellular
localisation experiments  | 
      
| 
           plotConvergence()  
         | 
        Generates a histogram of ranks (a rank plot) for convergence  | 
      
| 
           mcmc_plot_probs()  
         | 
        Generate a violin plot showing the probabilitiy of protein
localisation to different organelles  | 
      
| 
           spatial2D()  
         | 
        Generate a PCA plot with smoothed probability contours  | 
      
| 
           plotTable()  
         | 
        Generates a table for visualising changes in
localisation between two conditions/datasets  | 
      
| 
           plotTranslocations()  
         | 
        Generates a chord diagram or alluvial plot for visualising changes in
localisation between two conditions/datasets  | 
      
| 
           StatStratum  
         | 
        inherits StatSratum  | 
      
| 
           bandlePredict()  
         | 
        Make predictions from a bandle analysis  | 
      
| 
           kldirpg() kldir() prior_pred_dir() prior_pred_pg()  
         | 
        Computes the Kullback-Leibler divergence between Polya-Gamma and
Dirichlet priors  | 
      
| 
           bandleProcess()  
         | 
        process bandle results  | 
      
| 
           sim_dynamic()  
         | 
        Generate a dynamic spatial proteomics experiment  | 
      
| 
           bandle() diffLoc()  
         | 
        Differential localisation experiments using the bandle method  | 
      
| 
           chains() show(<bandleParams>) show(<nicheParam>) show(<bandleChain>) length(<bandleChains>) length(<bandleParams>) length(<bandleSummaries>) length(<nicheParams>) length(<nicheParams>) posteriorEstimates() summaries() params() bandleJoint() `[[`(<bandleChains>,<ANY>,<ANY>) `[[`(<bandleParams>,<ANY>,<ANY>) `[`(<bandleChains>,<ANY>,<ANY>,<ANY>) `[`(<bandleParams>,<ANY>,<ANY>,<ANY>) show(<bandleChains>) show(<bandleSummaries>) `[[`(<bandleSummaries>,<ANY>,<ANY>) `[[`(<bandleSummaries>,<ANY>,<ANY>) `[`(<bandleSummaries>,<ANY>,<ANY>,<ANY>) `[[`(<nicheParams>,<ANY>,<ANY>) `[[`(<nicheParams>,<ANY>,<ANY>) `[`(<nicheParams>,<ANY>,<ANY>,<ANY>) show(<nicheParams>)  
         | 
        Infrastructure to to store and process MCMC results  | 
      
| 
           gpParams-class  
         | 
        Container for GP results  | 
      
| 
           robustMahalanobis() reprodScore() mrMethod()  
         | 
        robust Mahalanobis distance  |