EFDR()
|
Compute the expected False Discovery Rate |
besselK_boost() besselK() matern() trenchDetcpp() trenchInvcpp() loglikeGPcpp() likelihoodGPcpp() gradientrhomatern() gradientamatern() gradientGPcppmatern() LeapfrogGPcppPC() sampleGPmeanmaterncpp() makeComponent() sampleGPmeancpp() normalisedData() normalisedDatamatern() centeredDatamatern() componentloglike() comploglike() comploglikelist() sampleDirichlet() sampleOutliercpp() sampleAlloccpp() centeredData() mahaInt() dmvtInt() dmvtCpp() gradientGPcpp() LeapfrogGPcpp() rcpp_pgdraw()
|
bessel function of the second kind from boost library |
diffLocalisationProb() bootstrapdiffLocprob() binomialDiffLocProb()
|
Compute differential localisation probabilities from ms-based
experiments using the bandle method |
gradientGP() gradientGPmatern() posteriorgradientGPmatern() gradientlogprior() likelihoodGP() likelihoodGPmatern() posteriorGPmatern() Gumbel() PCrhomvar() metropolisGP() metropolisGPmatern() Gumbel() PCrhomvar()
|
Compute GP gradient |
fitGP() fitGPmaternPC() fitGPmatern() plotGPmatern()
|
Fit a Gaussian process to spatial proteomics data |
proteinAllocation() outlierAllocationProbs() sampleOutlier() covOrganelle() pg_prior() sample_weights_pg() sample_weights_dir()
|
sample allocations, probabilities and compute loglikilihoods |
meanOrganelle()
|
Computes Organelle means and variances using markers |
bandle-package
|
An R package for the Bayesian analysis of differential subcellular
localisation experiments |
plotConvergence()
|
Generates a histogram of ranks (a rank plot) for convergence |
mcmc_plot_probs()
|
Generate a violin plot showing the probabilitiy of protein
localisation to different organelles |
spatial2D()
|
Generate a PCA plot with smoothed probability contours |
plotTable()
|
Generates a table for visualising changes in
localisation between two conditions/datasets |
plotTranslocations()
|
Generates a chord diagram or alluvial plot for visualising changes in
localisation between two conditions/datasets |
StatStratum
|
inherits StatSratum |
bandlePredict()
|
Make predictions from a bandle analysis |
kldirpg() kldir() prior_pred_dir() prior_pred_pg()
|
Computes the Kullback-Leibler divergence between Polya-Gamma and
Dirichlet priors |
bandleProcess()
|
process bandle results |
sim_dynamic()
|
Generate a dynamic spatial proteomics experiment |
bandle() diffLoc()
|
Differential localisation experiments using the bandle method |
chains() show(<bandleParams>) show(<nicheParam>) show(<bandleChain>) length(<bandleChains>) length(<bandleParams>) length(<bandleSummaries>) length(<nicheParams>) length(<nicheParams>) posteriorEstimates() summaries() params() bandleJoint() `[[`(<bandleChains>,<ANY>,<ANY>) `[[`(<bandleParams>,<ANY>,<ANY>) `[`(<bandleChains>,<ANY>,<ANY>,<ANY>) `[`(<bandleParams>,<ANY>,<ANY>,<ANY>) show(<bandleChains>) show(<bandleSummaries>) `[[`(<bandleSummaries>,<ANY>,<ANY>) `[[`(<bandleSummaries>,<ANY>,<ANY>) `[`(<bandleSummaries>,<ANY>,<ANY>,<ANY>) `[[`(<nicheParams>,<ANY>,<ANY>) `[[`(<nicheParams>,<ANY>,<ANY>) `[`(<nicheParams>,<ANY>,<ANY>,<ANY>) show(<nicheParams>)
|
Infrastructure to to store and process MCMC results |
gpParams-class
|
Container for GP results |
robustMahalanobis() reprodScore() mrMethod()
|
robust Mahalanobis distance |