All functions

EFDR()

Compute the expected False Discovery Rate

besselK_boost() besselK() matern() trenchDetcpp() trenchInvcpp() loglikeGPcpp() likelihoodGPcpp() gradientrhomatern() gradientamatern() gradientGPcppmatern() LeapfrogGPcppPC() sampleGPmeanmaterncpp() makeComponent() sampleGPmeancpp() normalisedData() normalisedDatamatern() centeredDatamatern() componentloglike() comploglike() comploglikelist() sampleDirichlet() sampleOutliercpp() sampleAlloccpp() centeredData() mahaInt() dmvtInt() dmvtCpp() gradientGPcpp() LeapfrogGPcpp() rcpp_pgdraw()

bessel function of the second kind from boost library

diffLocalisationProb() bootstrapdiffLocprob() binomialDiffLocProb()

Compute differential localisation probabilities from ms-based experiments using the bandle method

gradientGP() gradientGPmatern() posteriorgradientGPmatern() gradientlogprior() likelihoodGP() likelihoodGPmatern() posteriorGPmatern() Gumbel() PCrhomvar() metropolisGP() metropolisGPmatern() Gumbel() PCrhomvar()

Compute GP gradient

fitGP() fitGPmaternPC() fitGPmatern() plotGPmatern()

Fit a Gaussian process to spatial proteomics data

proteinAllocation() outlierAllocationProbs() sampleOutlier() covOrganelle() pg_prior() sample_weights_pg() sample_weights_dir()

sample allocations, probabilities and compute loglikilihoods

meanOrganelle()

Computes Organelle means and variances using markers

bandle-package

An R package for the Bayesian analysis of differential subcellular localisation experiments

plotConvergence()

Generates a histogram of ranks (a rank plot) for convergence

mcmc_plot_probs()

Generate a violin plot showing the probabilitiy of protein localisation to different organelles

spatial2D()

Generate a PCA plot with smoothed probability contours

plotTable()

Generates a table for visualising changes in localisation between two conditions/datasets

plotTranslocations()

Generates a chord diagram or alluvial plot for visualising changes in localisation between two conditions/datasets

StatStratum

inherits StatSratum

bandlePredict()

Make predictions from a bandle analysis

kldirpg() kldir() prior_pred_dir() prior_pred_pg()

Computes the Kullback-Leibler divergence between Polya-Gamma and Dirichlet priors

bandleProcess()

process bandle results

sim_dynamic()

Generate a dynamic spatial proteomics experiment

bandle() diffLoc()

Differential localisation experiments using the bandle method

chains() show(<bandleParams>) show(<nicheParam>) show(<bandleChain>) length(<bandleChains>) length(<bandleParams>) length(<bandleSummaries>) length(<nicheParams>) length(<nicheParams>) posteriorEstimates() summaries() params() bandleJoint() `[[`(<bandleChains>,<ANY>,<ANY>) `[[`(<bandleParams>,<ANY>,<ANY>) `[`(<bandleChains>,<ANY>,<ANY>,<ANY>) `[`(<bandleParams>,<ANY>,<ANY>,<ANY>) show(<bandleChains>) show(<bandleSummaries>) `[[`(<bandleSummaries>,<ANY>,<ANY>) `[[`(<bandleSummaries>,<ANY>,<ANY>) `[`(<bandleSummaries>,<ANY>,<ANY>,<ANY>) `[[`(<nicheParams>,<ANY>,<ANY>) `[[`(<nicheParams>,<ANY>,<ANY>) `[`(<nicheParams>,<ANY>,<ANY>,<ANY>) show(<nicheParams>)

Infrastructure to to store and process MCMC results

gpParams-class

Container for GP results

robustMahalanobis() reprodScore() mrMethod()

robust Mahalanobis distance