Internal R function to pass R to C++, not for external use.
Internal R function to pass R to C++, not for external use.
Function to perform Metropolis-Hastings for GP hyperparameters with different priors
gradientGP(Xk, tau, h, nk, D)
gradientGPmatern(Xk, tau, h, nk, D, materncov, nu)
posteriorgradientGPmatern(Xk, tau, h, nk, D, materncov, nu, hyppar)
gradientlogprior(h, hyppar)
likelihoodGP(Xk, tau, h, nk, D)
likelihoodGPmatern(Xk, tau, h, nk, D, materncov, nu)
posteriorGPmatern(Xk, tau, h, nk, D, materncov, nu, hyppar)
Gumbel(x, lambda, log = TRUE)
PCrhomvar(rho, a, lambda1, lambda2, log = TRUE)
metropolisGP(
inith,
X,
tau,
nk,
D,
niter,
hyperMean = c(0, 0, 0),
hyperSd = c(1, 1, 1)
)
metropolisGPmatern(
inith,
X,
tau,
nk,
D,
niter,
nu = 2,
hyppar = c(1, 1, 1),
propSd = c(0.3, 0.1, 0.1)
)
Gumbel(x, lambda, log = TRUE)
PCrhomvar(rho, a, lambda1, lambda2, log = TRUE)
The data
The indexing parameters
GP hyperparameters
Number of observations
number of samples
logical
indicating whether matern covariance is used
Smoothness of the matern covariance
A vector indicating the penalised complexity prior hyperparameters.
Default is c(1,1,1)
observation
scale parameter of the type-2 Gumbel distribution
logical
indicating whether to return log
. Default is TRUE
length-scale parameter
amplitude
first parameter of distribution
second parameter of distribution
initial hyperparamters
The data
Number of MH iteractions
A vector indicating the log-normal means. Default is c(0,0,0)
.
A vector indicating the log-normal standard deviations. Default is c(1,1,1)
The proposal standard deviation. Default is c(0.3,0.1,0.1)
. Do not
change unless you know what you are doing.
Returns gp gradient
Returns gp gradient
Returns the gradient of the posterior
return the gradient of the log prior, length-scale, aamplitude and noise
Returns gp negative log likelihood
Returns gp negative log likelihood
Returns the negative log posterior of the GP
Returns the likelihood of the type-2 GUmbel distribution
Returns the likelihood of the bivariate penalised complexity prior
Returns new hyperparamters and the acceptance rate
Returns the likelihood of the type-2 GUmbel distribution
Returns the likelihood of the bivariate penalised complexity prior
Gumbel(3, lambda = 1)
#> [1] -2.918416