These functions implement helper functions for the bandle method

diffLocalisationProb(params)

bootstrapdiffLocprob(params, top = 20, Bootsample = 5000, decreasing = TRUE)

binomialDiffLocProb(params, top = 20, nsample = 5000, decreasing = TRUE)

Arguments

params

An instance of bandleParams

top

The number of proteins for which to sample from the binomial distribution

Bootsample

Number of Bootstramp samples. Default is 5000

decreasing

Starting at protein most likely to be differentially localization

nsample

how many samples to return from the binomial distribution

Value

returns a named vector of differential localisation probabilities

returns a matrix of size Bootsample * top containing bootstrap

returns a list containing empirical binomial samples

Examples

library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1, 
                    numRep = 6L,
                   numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, function(x) 
fitGPmaternPC(x, hyppar = matrix(c(0.5, 1, 100), nrow = 1)))
d1 <- tansim$lopitrep
control1 <- d1[1:3]
treatment1 <- d1[4:6]
mcmc1 <- bandle(objectCond1 = control1, objectCond2 = treatment1, gpParams = gpParams,
                                     fcol = "markers", numIter = 10L, burnin = 1L, thin = 2L,
                                     numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
#> You haven't provided a seed, you may wish to provide a seed
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |========================================================              |  80%
mcmc1 <- bandleProcess(mcmc1)
dp <- diffLocalisationProb(mcmc1)

library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1, 
                    numRep = 6L,
                   numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, 
function(x) fitGPmaternPC(x, hyppar = matrix(c(0.5, 1, 100), nrow = 1)))
d1 <- tansim$lopitrep
control1 <- d1[1:3]
treatment1 <- d1[4:6]
mcmc1 <- bandle(objectCond1 = control1, objectCond2 = treatment1, gpParams = gpParams,
                                     fcol = "markers", numIter = 10L, burnin = 1L, thin = 2L,
                                     numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
#> You haven't provided a seed, you may wish to provide a seed
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |========================================================              |  80%
mcmc1 <- bandleProcess(mcmc1)
bdp <- bootstrapdiffLocprob(mcmc1)
library(pRolocdata)
data("tan2009r1")
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1, 
                    numRep = 6L,
                   numDyn = 100L)
gpParams <- lapply(tansim$lopitrep, 
function(x) fitGPmaternPC(x, hyppar = matrix(c(0.5, 1, 100), nrow = 1)))
d1 <- tansim$lopitrep
control1 <- d1[1:3]
treatment1 <- d1[4:6]
mcmc1 <- bandle(objectCond1 = control1, objectCond2 = treatment1, gpParams = gpParams,
                                     fcol = "markers", numIter = 10L, burnin = 1L, thin = 2L,
                                     numChains = 1, BPPARAM = SerialParam(RNGseed = 1))
#> You haven't provided a seed, you may wish to provide a seed
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |========================================================              |  80%
mcmc1 <- bandleProcess(mcmc1)
dp <- binomialDiffLocProb(mcmc1)