doublelogisticFunction.Rd
Implementation of double logistic function (a mixture of logistics)
doublelogisticFunction(t, b, a = 1, q = 1, pi, d)
numeric vector of time points
numeric vector of rate parameters
numeric vector of plateau parameters
numeric vector of stretch parameters
numeric vector of mixing parameters
numeric vector of rate parameters
numeric vector of model predictions
t <- seq(0, 10, length.out = 100)
b <- c(0.1)
a <- c(1)
q <- c(1)
pi <- c(0.5)
d <- c(0.1)
doublelogisticFunction(t, b, a, q, pi, d)
#> [1] 0.00000000 0.01005017 0.01999933 0.02984850 0.03959868 0.04925087
#> [7] 0.05880606 0.06826522 0.07762930 0.08689928 0.09607610 0.10516068
#> [13] 0.11415397 0.12305687 0.13187029 0.14059514 0.14923230 0.15778266
#> [19] 0.16624708 0.17462644 0.18292158 0.19113335 0.19926260 0.20731014
#> [25] 0.21527681 0.22316340 0.23097074 0.23869961 0.24635081 0.25392511
#> [31] 0.26142329 0.26884610 0.27619432 0.28346869 0.29066995 0.29779883
#> [37] 0.30485607 0.31184238 0.31875848 0.32560507 0.33238285 0.33909252
#> [43] 0.34573475 0.35231022 0.35881961 0.36526358 0.37164279 0.37795788
#> [49] 0.38420951 0.39039831 0.39652490 0.40258993 0.40859400 0.41453773
#> [55] 0.42042172 0.42624658 0.43201290 0.43772126 0.44337226 0.44896646
#> [61] 0.45450444 0.45998676 0.46541398 0.47078666 0.47610534 0.48137057
#> [67] 0.48658288 0.49174281 0.49685088 0.50190761 0.50691352 0.51186912
#> [73] 0.51677492 0.52163141 0.52643910 0.53119846 0.53590999 0.54057418
#> [79] 0.54519148 0.54976238 0.55428735 0.55876683 0.56320130 0.56759120
#> [85] 0.57193698 0.57623908 0.58049795 0.58471402 0.58888771 0.59301946
#> [91] 0.59710968 0.60115879 0.60516721 0.60913535 0.61306360 0.61695238
#> [97] 0.62080207 0.62461307 0.62838577 0.63212056